KAIST, 웨어러블 기기로 우울감 등 관련 증상 예측 기술 개발

2025-01-15

현 웨어러블 기기 바이오마커 간접적 정보 제공 한계

연구팀, 생체시계 위상 추정하는 필터링 기술 개발

한국과학기술원(KAIST)은 김대욱 뇌인지과학과 교수 연구팀이 대니엘 포저(Daniel B. Forger) 미국 미시간 대학교 수학과 교수팀과 공동연구로 스마트워치로부터 수집되는 활동량, 심박수 데이터로부터 교대 근무자의 수면 장애, 우울감, 식욕부진, 과식, 집중력 저하와 같은 우울증 관련 증상을 예측하는 기술을 개발했다고 15일 밝혔다.

WHO에 따르면 정신질환의 새로운 유망한 치료 방향은 충동성, 감정 반응, 의사 결정 및 전반적인 기분에 직접적인 영향을 주는 뇌 시상하부에 위치한 생체시계와 수면에 중점을 두는 것이다.

하지만 현재 내재적 생체리듬과 수면 상태를 측정하기 위해서는 하룻밤 동안 30분 간격으로 피를 뽑아 우리 몸의 멜라토닌 호르몬 농도 변화를 측정하고 수면다원검사를 수행해야 한다.

때문에 병원 입원이 불가피해, 통원 치료를 받는 정신질환자가 대부분인 실제 의료 현장에서 두 요소를 고려한 치료법 개발은 지난 반세기 동안 큰 진전이 없었다.

이러한 문제를 극복하기 위한 해결책은 공간의 제약 없이 실시간으로 심박수, 체온, 활동량 등 다양한 생체 데이터를 손쉽게 수집할 수 있다는 웨어러블 기기다. 그러나 현재 웨어러블 기기는 생체시계의 위상과 같은 의료 현장에서 필요로 하는 바이오마커(Biomarker)의 간접적인 정보만을 제공하는 한계를 가지고 있다.

공동연구팀은 스마트워치로부터 수집된 심박수와 활동량 시계열 데이터 등 매일 변화하는 생체시계의 위상을 정확히 추정하는 필터링 기술을 개발했다. 이는 뇌 속 일주기 리듬을 정밀하게 묘사하는 디지털 트윈을 구현한 것으로, 이를 활용해 일주기 리듬 교란을 추정하는 데 활용될 수 있다.

이 생체시계 디지털 트윈의 우울증 증상 예측 활용 가능성을 미시간 대학교 신경과학 연구소의 스리잔 센(Srijan Sen) 교수 및 정신건강의학과의 에이미 보너트(Amy Bohnert) 교수 연구팀과의 협업을 통해 검증했다.

협업 연구팀은 약 800명의 교대 근무자가 참여한 대규모 전향 코호트 연구를 수행해 해당 기술을 통해 추정된 일주기 리듬 교란 디지털 바이오마커가 내일의 기분과 우울증의 대표적인 증상인 수면 문제, 식욕 변화, 집중력 저하, 자살 생각을 포함한 총 6가지 증상을 예측할 수 있음을 보였다.

김대욱 교수는 “이번 연구를 통해 연속적이고 비침습적인 정신건강 모니터링 기술을 제시할 수 있을 것으로 기대된다”며 “이는 현재 사회적 약자들이 우울증 증상을 경험할 때 상담센터에 연락하는 등 스스로 능동적인 행동을 취해야만 도움을 받을 수 있는 문제를 해결해, 정신건강 관리의 새로운 패러다임을 제시할 것으로 보인다”고 말했다.

Menu

Kollo 를 통해 내 지역 속보, 범죄 뉴스, 비즈니스 뉴스, 스포츠 업데이트 및 한국 헤드라인을 휴대폰으로 직접 확인할 수 있습니다.